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A Simple Proof of Gauss Markov Theorem 
 
Starting point:  The Sample Mean is BLUE 

1) Recall the analysis of the Sample Mean estimator… 

2) Linear unbiased estimators (LUEs) 

1 1 2 2 ... n nM Y Y Yβ β β= + + + , where 
1

1
n

i
i
β

=

=∑   

The constraint is required for unbiasedness. 

3) To find the Best Linear Unbiased Estimator 
(BLUE): 

min 22( )i ii
Var Yβ σ β=∑ ∑   

subject to 
1

1
n

i
i
β

=

=∑ . 

4) Solution:  * 1
i n

β = . 

5) So the Sample Mean is a BLUE Estimator. 

 
Turning to Gauss-Markov:  Estimating the slope parameter in an SLR model 

6) We want to estimate the slope parameter, 1β , of the linear model (DGM):  0 1Y X Uβ β= + +
.  Assume SLR.1-SLR.5 and consider the following general linear estimator (since we are 
conditioning on the ' ,ix s  the estimator will be linear in the 'iY s ):  1 0 i iB b b Y= +∑ . 

7) Unbiased:  Since ( )0 0 0 1 0 0 1 1i i i i i i iE b b Y b b x b b b xβ β β β β + = + + = + + ≡ ∑ ∑ ∑ ∑ , for a 
LUE, we require:   

• 0 0b = ,  

• Constraint I: 0ib =∑  and  

• Constraint II: 1i ib x =∑ .1   

8) Variance:  Given that 0 0b = , the variance of the estimator will be: 2 2
i i iVar b Y bσ  = ∑ ∑ .  

And so the optimization problem becomes:   
2 2 . .imin b s tσ ∑ 0ib =∑  and 1i ib x =∑  

                                                 
1 Note that if SLR.3 is violated and there is no variation in the x’s, then the two constraints cannot be jointly satisfed 
so long as 0x ≠  . 
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9) Collapsing the constraints: 

a) Constraints I and II imply that 1 i i i i ib x b x x b= = −∑ ∑ ∑ , since 0ib =∑ , and so any

{ }ib  satisfying I and II, must also satisfy: 

• Constraint III:  ( ) 1i i i ib x x b d− = =∑ ∑ … where ( )i id x x= − , 1, ...,i n=  

10) The trick below is that rather than minimizing 2 2
ibσ ∑  subject to Constraints I and II, we 

instead minimize subject to Constraint III, which includes all { }ib  satisfying I and II, and 

perhaps other { }ib , and then show that the optimal b’s, { }*
ib , also satisfy Constraints I and II. 

11) The following diagram illustrates the approach: 

 
12) Example:  Consider two x’s, where 1 0x =  and 2 1x = .  Then the three constraints are: 

• Constraint I (c1):  1 2 0b b+ = , 

• Constraint II (c2):  2 1b = , and  

• Constraint III (c3):  2 1.5 .5 1b b− = . 

 
Note that the { }ib  satisfying constraints I and II ( 1 21, 1b b= − = ) also satisfies constraint III. 
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13) Accordingly, the Constraint III BLUE optimization problem becomes: 

 

( )2 2 . . 1i i i i imin b s t x x b d bσ − = =∑ ∑ ∑ . 

 

 

 
 

14) At the optimum:  
( )
( )

*
2

2

1

ii
i n

jj
jj

x xdb
x xd

=

−
= =

−∑∑
 1, ...,i n= , .2 

15) And so, we have OLS!: 

( )
( )

( )

( )

( )( )

( )1 2 2 2

i i i i
i i i

i
i j j j

j j j

x x Y x x Y Yx x
B Y

x x x x x x

  − − − −
= = = 

 − − − 
 

∑ ∑
∑

∑ ∑ ∑
 

  

                                                 
2 See the Appendix for a proof. 
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16) Checking that both constraints I and II are satisfied: 

a) Constraint I is satisfied:  
( )
( )2 1i i

i i

j
j

x x x
b x

x x

−
= =

−

∑∑
∑

 since for the denominator, we have 

( ) ( )( ) ( )2

j j j j j
j j j

x x x x x x x x x− = − − = −∑ ∑ ∑ . 

b) Constraint II is also satisfied:  
( )
( )2 0i

i

j
j

x x
b

x x

−
= =

−

∑∑
∑

 because the numerator is 0. 

c) Constraints satisfied!  

 

 

 

 

 

 

 

OLS is BLUE! 
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Appendix:  Proof of the Gauss-Markov Theorem 

17) Consider the constrained optimization problem above (since it doesn't affect anything, let's 

drop 2σ ):   min 2

1
1

n

i
i
β

=

=∑  subject to 
1

1
n

i i
i

d β
=

=∑ . 

 

 
 

a) As you saw in the Review of Estimation, we can incorporate the constraint into the 

objective function.  The constraint requires that 
1

1
n

i i
i

d β
=

=∑ , or put differently:  

1

1
1

n

n n i i
i

d dβ β
−

=

= −∑ , or 
1

1

1 1
n

n i i
in

d
d

β β
−

=

 
= − 

 
∑ . 

b) Incorporating the constraint in the objective function, we have a new (unconstrained) 
optimization problem: 

21 1 1
2 2 2

2
1 1 1

1min 1
n n n

i n i i i
i i in

d
d

β β β β
− − −

= = =

   + = + −  
   

∑ ∑ ∑ . 
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c) As before, we can solve this with n-1 FOCs (First Order Conditions): 

For 1, ... , 1:j n= −  
1 1

2 2
2

1 1

22 1 ( ) 0
n n

i n j i i j
i ij n

d d
d

β β β β
β

− −

= =

 ∂    
+ = + − − =    ∂     

∑ ∑  

d) But then 
1

* * * *
2 2

1
1

n
j j j

j i i n n n
in n n

d d d
d d

d d d
β β β β

−

=

 
= − = = 

 
∑ , and so 

* * *
j i n

j i nd d d
β β β

= = , for any i and j.  

e) Simplifying things:   

i) 
*1 1

* 2 *

1 1
1

n n
n

j j j n n
j jn

d d d
d
ββ β

− −

= =

= = −∑ ∑ , or … 
1

* 2 2 *

1

n

n j n n n
j

d d dβ β
−

=

= −∑  

ii) 
1

* 2 2 *

1

n

n j n n n
j

d d dβ β
−

=

+ =∑ , or … * 2

1

n

n j n
j

d dβ
=

=∑ , or … *

2

1

n
n n

j
j

d

d
β

=

=

∑
 

iii) So 
* * *

2

1

1j i n
n

j i n
j

j

d d d d

β β β

=

= = =

∑
… and so *

2

1

1, ...,i
i n

j
j

d i n
d

β

=

= =

∑
.   

f) Or put differently:  At the (constrained) optimum, 
2

*

2

1

1, ...,i
i i n

j
j

dd i n
d

β

=

= =

∑
, and the 

* 'i id sβ  are non-negative weights that sum to one. 


