A Simple Proof of Gauss Markov Theorem

Starting point: The Sample Mean is BLUE

1) Recall the analysis of the Sample Mean estimator...
2) Linear unbiased estimators (LUEs)
$M=\beta_{1} Y_{1}+\beta_{2} Y_{2}+\ldots+\beta_{n} Y_{n}$, where $\sum_{i=1}^{n} \beta_{i}=1$
The constraint is required for unbiasedness.
3) To find the Best Linear Unbiased Estimator (BLUE):
$\min \operatorname{Var}\left(\sum \beta_{i} Y_{i}\right)=\sigma^{2} \sum \beta_{i}{ }^{2}$
subject to $\sum_{i=1}^{n} \beta_{i}=1$.
4) Solution: $\beta_{i}^{*}=\frac{1}{n}$.

5) So the Sample Mean is a BLUE Estimator.

Turning to Gauss-Markov: Estimating the slope parameter in an SLR model

6) We want to estimate the slope parameter, β_{1}, of the linear model (DGM): $Y=\beta_{0}+\beta_{1} X+U$. Assume SLR.1-SLR. 5 and consider the following general linear estimator (since we are conditioning on the x_{i} 's, the estimator will be linear in the $\left.Y_{i}{ }^{\prime} s\right): B_{1}=b_{0}+\sum b_{i} Y_{i}$.
7) Unbiased: Since $E\left[b_{0}+\sum b_{i} Y_{i}\right]=b_{0}+\sum b_{i}\left(\beta_{0}+\beta_{1} x_{i}\right)=b_{0}+\beta_{0} \sum b_{i}+\beta_{1} \sum b_{i} x_{i} \equiv \beta_{1}$, for a LUE, we require:

- $b_{0}=0$,
- Constraint I: $\sum b_{i}=0$ and
- Constraint II: $\sum b_{i} x_{i}=1 .{ }^{1}$

8) Variance: Given that $b_{0}=0$, the variance of the estimator will be: $\operatorname{Var}\left[\sum b_{i} Y_{i}\right]=\sigma^{2} \sum b_{i}^{2}$. And so the optimization problem becomes:

$$
\min \sigma^{2} \sum b_{i}^{2} \text { s.t. } \sum b_{i}=0 \text { and } \sum b_{i} x_{i}=1
$$

[^0]9) Collapsing the constraints:
a) Constraints I and II imply that $1=\sum b_{i} x_{i}=\sum b_{i} x_{i}-\bar{x} \sum b_{i}$, since $\sum b_{i}=0$, and so any $\left\{b_{i}\right\}$ satisfying I and II, must also satisfy:

- Constraint III: $\sum b_{i}\left(x_{i}-\bar{x}\right)=\sum b_{i} d_{i}=1 \ldots$ where $d_{i}=\left(x_{i}-\bar{x}\right), i=1, \ldots, n$

10) The trick below is that rather than minimizing $\sigma^{2} \sum b_{i}^{2}$ subject to Constraints I and II, we instead minimize subject to Constraint III, which includes all $\left\{b_{i}\right\}$ satisfying I and II, and perhaps other $\left\{b_{i}\right\}$, and then show that the optimal b's, $\left\{b_{i}^{*}\right\}$, also satisfy Constraints I and II.
11) The following diagram illustrates the approach:

Constraint III
12) Example: Consider two x 's, where $x_{1}=0$ and $x_{2}=1$. Then the three constraints are:

- Constraint I (c1): $b_{1}+b_{2}=0$,
- Constraint II (c2): $b_{2}=1$, and
- Constraint III (c3): . $5 b_{2}-.5 b_{1}=1$.

Note that the $\left\{b_{i}\right\}$ satisfying constraints I and II ($b_{1}=-1, b_{2}=1$) also satisfies constraint III.

A Simple Proof of Gauss Markov Theorem

13) Accordingly, the Constraint III BLUE optimization problem becomes:

$$
\min \sigma^{2} \sum b_{i}^{2} \text { s.t. } \sum\left(x_{i}-\bar{x}\right) b_{i}=\sum d_{i} b_{i}=1
$$

14) At the optimum: $b_{i}^{*}=\frac{d_{i}}{\sum_{j=1}^{n} d_{j}^{2}}=\frac{\left(x_{i}-\bar{x}\right)}{\sum_{j}\left(x_{j}-\bar{x}\right)^{2}} i=1, \ldots, n, .^{2}$
15) And so, we have OLS!:

$$
B_{1}=\sum_{i}\left(\frac{\left(x_{i}-\bar{x}\right)}{\sum_{j}\left(x_{j}-\bar{x}\right)^{2}}\right) Y_{i}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right) Y_{i}}{\sum_{j}\left(x_{j}-\bar{x}\right)^{2}}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{j}\left(x_{j}-\bar{x}\right)^{2}}
$$

[^1]16) Checking that both constraints I and II are satisfied:
a) Constraint I is satisfied: $\sum b_{i} x_{i}=\frac{\sum_{j}\left(x_{i}-\bar{x}\right) x_{i}}{\sum_{j}\left(x_{j}-\bar{x}\right)^{2}}=1$ since for the denominator, we have
$$
\sum_{j}\left(x_{j}-\bar{x}\right)^{2}=\sum_{j}\left(x_{j}-\bar{x}\right)\left(x_{j}-\bar{x}\right)=\sum_{j}\left(x_{j}-\bar{x}\right) x_{j} .
$$
b) Constraint II is also satisfied: $\sum b_{i}=\frac{\sum\left(x_{i}-\bar{x}\right)}{\sum_{j}\left(x_{j}-\bar{x}\right)^{2}}=0$ because the numerator is 0 .
c) Constraints satisfied!

Appendix: Proof of the Gauss-Markov Theorem

17) Consider the constrained optimization problem above (since it doesn't affect anything, let's drop σ^{2}): min $\sum_{i=1}^{n} \beta_{i}^{2}=1$ subject to $\sum_{i=1}^{n} d_{i} \beta_{i}=1$.

a) As you saw in the Review of Estimation, we can incorporate the constraint into the objective function. The constraint requires that $\sum_{i=1}^{n} d_{i} \beta_{i}=1$, or put differently:
$d_{n} \beta_{n}=1-\sum_{i=1}^{n-1} d_{i} \beta_{i}$, or $\beta_{n}=\frac{1}{d_{n}}\left[1-\sum_{i=1}^{n-1} d_{i} \beta_{i}\right]$.
b) Incorporating the constraint in the objective function, we have a new (unconstrained) optimization problem:

$$
\min \sum_{i=1}^{n-1} \beta_{i}^{2}+\beta_{n}^{2}=\left\{\sum_{i=1}^{n-1} \beta_{i}^{2}+\frac{1}{d_{n}^{2}}\left[1-\sum_{i=1}^{n-1} d_{i} \beta_{i}\right]^{2}\right\} .
$$

A Simple Proof of Gauss Markov Theorem

c) As before, we can solve this with n-1 FOCs (First Order Conditions):

For $j=1, \ldots, n-1: \frac{\partial}{\partial \beta_{j}}\left\{\sum_{i=1}^{n-1} \beta_{i}^{2}+\beta_{n}^{2}\right\}=\left\{2 \beta_{j}+\frac{2}{d_{n}^{2}}\left[1-\sum_{i=1}^{n-1} d_{i} \beta_{i}\right]\left(-d_{j}\right)\right\}=0$
d) But then $\beta_{j}^{*}=\frac{d_{j}}{d_{n}^{2}}\left[1-\sum_{i=1}^{n-1} d_{i} \beta_{i}^{*}\right]=\frac{d_{j}}{d_{n}^{2}} d_{n} \beta_{n}^{*}=\frac{d_{j}}{d_{n}} \beta_{n}^{*}$, and so $\frac{\beta_{j}^{*}}{d_{j}}=\frac{\beta_{i}^{*}}{d_{i}}=\frac{\beta_{n}^{*}}{d_{n}}$, for any i and j.
e) Simplifying things:
i) $\sum_{j=1}^{n-1} d_{j} \beta_{j}^{*}=\frac{\beta_{n}^{*}}{d_{n}} \sum_{j=1}^{n-1} d_{j}^{2}=1-d_{n} \beta_{n}^{*}$, or $\ldots \beta_{n}^{*} \sum_{j=1}^{n-1} d_{j}^{2}=d_{n}-d_{n}^{2} \beta_{n}^{*}$
ii) $\beta_{n}^{*} \sum_{j=1}^{n-1} d_{j}^{2}+d_{n}^{2} \beta_{n}^{*}=d_{n}$, or $\ldots \beta_{n}^{*} \sum_{j=1}^{n} d_{j}^{2}=d_{n}$, or $\ldots \beta_{n}^{*}=\frac{d_{n}}{\sum_{j=1}^{n} d_{j}^{2}}$
iii) So $\frac{\beta_{j}^{*}}{d_{j}}=\frac{\beta_{i}^{*}}{d_{i}}=\frac{\beta_{n}^{*}}{d_{n}}=\frac{1}{\sum_{j=1}^{n} d_{j}^{2}} \ldots$ and so $\beta_{i}^{*}=\frac{d_{i}}{\sum_{j=1}^{n} d_{j}^{2}} i=1, \ldots, n$.
f) Or put differently: At the (constrained) optimum, $d_{i} \beta_{i}^{*}=\frac{d_{i}^{2}}{\sum_{j=1}^{n} d_{j}^{2}} i=1, \ldots, n$, and the
$d_{i} \beta_{i}^{*}$'s are non-negative weights that sum to one.

[^0]: ${ }^{1}$ Note that if SLR. 3 is violated and there is no variation in the x 's, then the two constraints cannot be jointly satisfed so long as $\bar{X} \neq 0$.

[^1]: ${ }^{2}$ See the Appendix for a proof.

