A Simple Proof of Gauss Markov Theorem

Starting point: The Sample Mean is BLUE
1) Recall the analysis of the Sample Mean estimator...
2) Linear unbiased estimators (LUES)

b;+b,=1
slope=-1"“
p S

M = BY, +BY, +..+ BY., where Z,Bi =1 <
i=1

ri

The constraint is required for unbiasedness.

3) To find the Best Linear Unbiased Estimator
(BLUE):

min Var(}. gY )=c*> B N

b,

subjectto > B =1.

i=1

4) Solution: ﬂi*:l.
n

5) So the Sample Mean is a BLUE Estimator.

Turning to Gauss-Markov: Estimating the slope parameter in an SLR model

6) We want to estimate the slope parameter, 4, of the linear model (DGM): Y = B, + B X +U
. Assume SLR.1-SLR.5 and consider the following general linear estimator (since we are
conditioning on the X, 's, the estimator will be linear inthe Y, 's): B, =b, +ZbiYi :

7) Unbiased: Since E[by+ > bY, |=by+ > b (8 + 8% )=by+ 52 b+ By bx =B, fora

LUE, we require:
e b, =0,

e Constraint 1: b, =0 and
e Constraint I1: D bx =1.1

8) Variance: Given that b, =0, the variance of the estimator will be: Var[z biYi] = GZbe :
And so the optimization problem becomes:

min ¢?» b? st. Db =0and Y bx =1

! Note that if SLR.3 is violated and there is no variation in the x’s, then the two constraints cannot be jointly satisfed
solongas X #0 .
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9) Collapsing the constraints:
a) Constraints I and Il imply that 1=>"bx, = > bx —X> b, since D_b =0, and so any
{b} satisfying I and II, must also satisfy:
e Constraint I11: ) b(x —X)=> bd, =1... where d, =(x -X), i=1..,n

10) The trick below is that rather than minimizing JZbe subject to Constraints | and 11, we
instead minimize subject to Constraint I11, which includes all {bi} satisfying I and II, and

perhaps other {bi} , and then show that the optimal b’s, {bi* } , also satisfy Constraints | and I1.
11) The following diagram illustrates the approach:

Constraint | Constraint [l

Constraint Il

12) Example: Consider two x’s, where x, =0 and x, =1. Then the three constraints are:
e Constraint I (c1): b +b, =0,
e Constraint Il (c2): b, =1, and

e Constraint Il (c3): .5b, —.5b =1.

Note that the {b;} satisfying constraints I and Il (b, =—1, b, =1) also satisfies constraint I11.
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13) Accordingly, the Constraint 111 BLUE optimization problem becomes:

min o2 b’ st.Y) (% -X)b=> db =1.

dib, +dyb, =1 b,
slope =-d, d, ‘\

2 See the Appendix for a proof.



A Simple Proof of Gauss Markov Theorem

16) Checking that both constraints I and 1l are satisfied:

X — X ) X:
Z('—)z' =1 since for the denominator, we have

a) Constraint | is satisfied: Zbixi = =
Z(x. - x)

j

X —X
b) Constraint Il is also satisfied: » b = Z(—'))z =0 because the numerator is 0.
X =X
]

i

¢) Constraints satisfied!

OLS is BLUE!
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Appendix: Proof of the Gauss-Markov Theorem
17) Consider the constrained optimization problem above (since it doesn't affect anything, let's
drop o?): min ) A% =1 subjectto > d,3 =1.
i=1 i=1

d;b;+d;b,=1 b,
slope =-d,,d, \\

a) As you saw in the Review of Estimation, we can incorporate the constraint into the

objective function. The constraint requires that Zdi £, =1, or put differently:
i=1

dnﬂn =:I'_zldilgi , Or IBn :di|:l_nz_id|ﬂ|:|

i=1

b) Incorporating the constraint in the objective function, we have a new (unconstrained)
optimization problem:

min$ g 1 :{“zlﬁ;+d_g@_§d4 }

i=1
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c) As before, we can solve this with n-1 FOCs (First Order Conditions):

For j=1,..,n-1: %{iﬁi%ﬂn} {2/3 +— {1 Zdﬂ}( d. )}

] n

d) Butthen ,B;:—i[l Zdﬂ} d g = ‘/3 and so ?:'g_i:%,foranyiandj.

j i n

e) Simplifying things:

n-1 * n-1 n-1
i) Z;djﬂ; :%de =1-d_g’, or ... ,an;df —d, —d2g
J= j=

n j=1

n-1 n
i) gy d?+dig, =d,,or...5> d2=d, or... g =—"
j=1 j=1

n

*

iii) So %:ﬁ—‘:%: nl ..andso B = nd‘ i=1..n
BN v'] >
]= 1=

2
f) Or put differently: At the (constrained) optimum, diﬂi*: nd‘

2.4

j=L

i=1..n,andthe

d, 3 's are non-negative weights that sum to one.



